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SUMhlARY 

A rigid solution of the problem of sorption dynamics is given for the case of 
a rectangular isotherm and particle diffusion kinetics. Regions of correctness of the 
soWion are indicated. The initial part of the breakthrough curve has been examined 
particularly for smail sorbent layers, when it was in principle necessary to take into 
account film diffusion kinetics. 

The correctness of the theory and the possible predicticns from it are illus- 
trated by the sorption of fulvic acids of natural waters by activated charcoal. 

lNTRODUcFION 

The rectangcllar isotherm refects the strong interaction between the sorbent 
and sorbate’. This type of isotherm represents the equilibrium in the processes of 
chemisorption, demineralization of water in mixed layers of ion exchangers2, ion 
exchange with the generalized constant of the exchange 

where K,,, is the ion-exchange constant for (1) the ion that is absorbed and (2) that is 
liberated, Z, and Z, are the charges of the ions, a, is the total capacity of the sorbent 
aud co is the concentration of the absorbed ion inthe incoming flog, and ion exchange 
with complexing in the solutionJ. Freundlich’s isotherms also could be considered as 
isotherms of this type. The so&&ions ofthe dynamics concerning this isotherm have been 
considered for kinetics limited by external diffusion1 and for equihiirium dynamics 
compJ.icated bjr longitudinal diffusions. In this paper, this problem is solved for par- 
ticle diffusion, not previously described in the literature”. 

* Presented at the 5th Soviet-Italian Chromatography Symposium, TaNan, April 32-3,1975. 
*= After the preparation of this paper for pub!ication, a paper was published6 in which some 

sneeial solutions of this probIem were disc& (eqn_ Ha). 



The solutio& is based on the possibility & using Fi&‘s~ law for a solid phase. 
The regioa in which the solution is acceptable is limited by -two conditiok : 

H1 is the ‘criterion, characterizing the relationship between the rates of diEusion in 
the Iiquid phase and the solid phase and R2 is the crikribn characterizing the relation- 
ship between the rate-of diffusion along the 810~ and the rate of difksion in the solid 
phase. In these equations, v is the linear flow-rate, /? is the mass transfer coeflkient 
of the absorbed matter in the mobile phase relative to unit volume, R is the particle 
size of the sorbent’, D is the diffusion coefficient in the sorbent and D* is the longi- 
tudinal diffusion coeEcient. E&@&ions and experiments have shown that for many 
systems these conditions are fulfilled. In particular, these inequalities are found for 
sorption when the flow-rate is moderate (V > 0.1 cm/se@ from dilute solutions 
(aO/co > 103) with a granular sorbent (R > 0.01 cm) for substances with D < lo-* 
Cd/SeC. 

For estimation, it is possible to consider 

where ct, is the coefficient nearest to unity for aqueous solutions and diffusing par- 
ticles with low molecular weight, and 

D+=2a,vR 

where 

cft SW 1. 

Apart from the above constraints for small layer thicknesses on the initial 
part of the breakthrough curve, it is necessary to take into accou.% an instantaneous 
breakthrough, which is equal to 

d -- 
U,=F=e v 

where I is the layer thickness and c, and U, are dimensional and non-dimensional 
concentrations, respectively, in the mobile phase- at the start of the experiments- 

The rectangular isotherm -equation in non-dimensional variables is given byL 



where V = & is the non-dimensional mean ~ncentration in the solid phase, 
U = c/c0 is the non-dimensionzxl concentration in the liqaid (gaseous) phase, a is the 
dimensional ~cmcensration in the sorbent particles and c is the dimensional concen- 
tration in the mobile phase. 

It is dear. from eqn. 3 that on the surface of a particle f/ can have only two 
values, Y=O when U=O and V= 1 W&II U>O; hence, in the region c’>O, 
the absorption rate does not depend OEL U and therefore there is a limiting length of 
the layer, l, which is sufEci&t to reduce U from 1 to 0. 

Denoting by 8 = (D[S) [r - (@G I# (where x = specific pore volume of the 
column) the non-dimensional time necessary for the point of the concentration front 
U = 0 to pass the non-dimensional distance X = D ZQ& Rf co from the beginning 
of the layer l , 8 = 0 (X), then for T -=c 8, we have V = 0, for T 2 8 (ref. 7) for spherical 
paxticles l * we have 

6 * e-X2&T- 0) 

“=‘-7m~l n2 

for cylindrical particles we have 

2 

V=l-45 e 
-&AT-f38) 

a=1 p', 

and for fiat particles we have 

co e-“2(zn+ Go- 8) 

v=l-sK:o (2nfl)’ 

(4a) 

(4W 

where the f~ values are the roots of a Bessel function of the first type, zero order. During 
the first few moments, only the surface layers of the particles are involved in inter- 
actions. This stage is defined by 6 + 0 and T - 6 + 0 and eqn. 4 is transformed into 

Eqn. 5, contrary to eqn. 4, is true for particles of any form with an arbitrary distri- 
bution on-R; in this case eqn. 5 is defined by the specific surface area of the sorknt, 
R = 3/o, where w is the surface area of the particles of the sorbent per tit volume. 

* The comectian betwxm the dimensional tiues r and C and tie non-dkaensionai values 0 
and X is easily determined with the aid of an anzIytical m&mds or the transformation of the initial 
difkreatial equations of the matcrizd bahce and kin&~. 

l - For non+qGiibtium pmcesses, ‘/ is the mean concentratior~ 
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Calculations of V(x,,T) on the basis ofeqns. 4 and 5 s&e& &&edep&dence 
-8 (x) is kn own. To defme the ratter, let us integrate the material halance equation‘ 

av aY --=- 
aX 3T 

from 0 to X’: 

Introducing a new variable && which defines the rate of movement of the 
front with concentration U = 0: 

we obtain the integral equation with respect to p(6): 

The solution of this equation gives the required dependence. By applying a Laplace 
transformation to eqn. 7, we obtain the image p(p) (refs. 7 and 9): 

HP)=&- m l1 1 

“?I ,z%= + p 
= 3(dp.Ctn&/p- 1) 

when p + 0, it corresponds to 8 + co, q(p) -+ l/p then @3) + 1 or 

x=e+-x, (81 

where X, is the constant of integration. This equation follows, in more general form, 
from the condition of the existence of the asymptotic solution (pareIIeI transfer) when 
the concentration depends only on one variable, q = X - T (ref. 10). 

Then_ in accordance with eqn. 4a, we have 

for 

-q<Xx,andU= V=O 

for 

* The value of the definite i?iegral dozs not depend 00 l &e vsiabfe of inteption and X under 
t%e integial is Ix@wd w&h A_ - 



We can determine Xi From the materid balance equatioti: 

moreover, for 8 > 0.5, the last term is less than 1 %-of the last but one sam, and there- 
fore under parallel transfer conditions 8 = X - l/H*, or, in fmal form: 

It should be noted that values of the function 

have been tabulated’2. 
The solution for small values of 0 is found by expanding &I) in a series in 

114~ and e-Jp: 

faNPI= 
& c1 _ 2e-2Jp + 2=-4~~ _ _ _ _) .+ Gp(l - d.t~-~J~ t 8eBJdP - - - -1-k 

The otig,inal image corresponds to 

1 2 (e- l/0 _ e-“8 1 -- 
q@) = 3+e 3+e 

1 
+3P3/t 

1 
i3p5/‘f 

this image 

1 +-- 4 

3 
$D* (--$) t ;dj. (-$-) i- 

2de e 4e3/L 82 
i-f+- gdz ++- 

3+E 

From this expression, in accordance with eqn. 6 and neglecting in integration 
terms less than 13” and e-1’@-W2”, we obttin 

. . . 

. . . 

the 

ad R= _ 
*lfiisd~~~,wri~enintheformt=--- 

1SD 
IS tie ShiIov equation exactly” for 

xa 
C = Q. 

** When 6 > 0.5, it is net possible to neglect the temx that are more than P and e-r’e-6? 
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Fig. i . Dependence of the coordinates of the front point on time for a rekngular isotherm and par- 
ticle kbetics. (a) The exact solution; (61 the asymptotic soiztion when B + 00; (c) the asymptotic 
solution when 19 - 0. 

Comparison of the exact soluiion (eqn. 10) (Fig. 1, curve ca) with the asymptotic 
solution (eqn. 9) (curve b) shows that for 8 = 0.1 the dieerence is approximately 2 oA ; 
for 8 = 0.4 the asymptotic soiution provides an accuracy of better than 0.1% ; for 
6 < 0.01 the accuracy is better than 1% (curve c): 

, 2 _y = - V s 0 
3 z” 3 

Hence, knowing the dependence 8 ix), we obtain 

For 13 < 0.005, remembering that for A -+ 0 the sum Z ._.‘A -+ 5 V 
- m 
Gfromeqns. 

10 and 11, it is not difficult to deduce for T/F Z 9 z/4 that 

or 

2 
U=$arctan-- 

v/T-_ 

3+ x 

Solving eqn. 1% la respect of T/F, we 

(12b) 

obtain 

In Fig. 2, curve a shows the dependence V(T) fos any T > 0 (x). This curve also 
gives the approximate dependence U(T) for 6 > 0.2’(X > 0.27). Curve b corresponds 
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fix a T-e 

Fig. 2. The breaWtrou& cues. (a) Concentration in the solid phase for ay 6 2nd concentration in 
the liquid phase for 8 > 0.2: (b) concentration i?l the Liquid phase for 8 < 0.005. 

to the dependence U(T) for 8 < T < 0.005 (X < 0.028). Here, the start of reading T 
begins with the point of breakthrough. The logarithmic scale permits a translation 
from non-dimensional values U (or V) and T - 8 to the dimensional values c (or Q) 

and (t - t,y)‘. In order to achieve such a translation, it is necessary to move to the 
left the point of origin of the coordinates by the value log D/R’ for curve ca [or by 

VCO 2 
the value log - 

! > 

1 

IQ0 
- D for curve b] and to move it down by the value log c, (or 

log a0). Then, superimposing the experimental curves log c, log (t - to) on curve a, 

we cm determine D in terms of the digerence log (t - to) - log (T - 0). The condi- 
tion 8 > 0.2 also enables one to find a, from eqn. 8 without carrying out a separate 
experiment. When t9 -K 0.005, the form of the curve is defined by the product @I, and 
therefore the simultaneous determination of a,, and D is impossible_ 

RESULTS AND DISCUSSION 

We shall now illustrate the application of some of the results to the problem 
of the sorption of “fuivic acids- (FA) by active charcoal (AC). 

Some FA were extracted from natural waters by the method described by For- 
syth13 as modified by Sirotkina et al-l” and their concentrations were determined by 
spectrophotometryZ5 and polarography16. The active charcoal (type BAU) was sub- 
jected to* a pre-treatment according to Berezina and Nikolaeva-Fedorovich”. De- 
mineralization was effected on type KY-2 cation exchanger. The sorption isotherm 
obtained in the static experiment is shown in Fi,. 0 3 and it is clear that it is very similar 
to Freundlich’s isotherm, which may be approximated by a rectanguiar isotherm 
with a, = 27 mg/ml at the concentration level co M 3 - 10s2 mg/ml. 

As a result of the prdiminary estimation of D, based ou the rate of the achieve- 
ment of the equilibrium in the st?ldy of sorption, we obtained a value of D w lO-‘o 
cm2/sec. 

A typical breakthrough curve in the dynamic exr)eriment is shown in Fig. 4 
(curve Q). For these experiments with t < EOC set, T c 10m2 and the curve is therefore 
described by eqn. 12a. 

- f = R’TfD; re = R%/D. 
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Fig. 3. Sorption isotherm for FA on BAU. Weighed amount, 0.05-2.0 g/ml; bulk weight, 0.15 g/ml; 
particle diameter, O.lGX2 mm; volume of solution of FA, 25 ml; initial concentration of FA, 0.1 
mg/mI; active time (time of con+act), 25-30 h. Equati JR of curve: LI = 107&+. 

o! ‘, 1 0 loo s-v-t, ml 260 

Fig. 4. Comparison of experiztental and theoretical b&through curves. co = 0.031 mgfmf ; q = 
27 mg/ml; thickness of layer = 2.3 cm; Y = 0.22 cm/_=; partick diameter = 0.2 mm; cross-set- 
tional area of the column (s) = 0.09 cm’. (u) Experimen*al points; @) theoretical breakthrough curve, 
cakulated witho~ taking auzount of the particle difillsion kinetics; (c) initiai part of the breakthrough 
curve, eakuiated with taking account of the particle diffusion kinetics. 

ol , I I I , I I 1 1 , 

0 loo s-v-t, ml 200 

Fig. 5. Dependence of T/P on s-v-f, constructed on ffie basis of the experimental curve in Fig. 4. 

The term Q* d/D was determined for eacfi experiment& poir~t as foflows. For 
a given value of U in accordance with eqn. 12c, the value T,!JP which is proportional 
to s- v- t l was caiculated. From Fig. 5, where the dependeme T/P on s- v-t is presented 



in car&&~ coordinates, it can be seen that the points he satisfactorily on a straight 
line that passes through the origin, in accordance with theory. 

The value of D, which was determined from the dope of the line in Fig. 5, was 
1.43-10-Eo cmflsec. In Fig. 4 (curve b) the theoretical breakthrough curve is shown; 
it was c&ufated by means of eqn. 1%~ for the same system. Initially (U < OS), the 
theoretical (calculated) curve (curve b) is located to the right of the experimental 
curve (curve a); this diEerfmce is easiiy explained b-y the occurrence of the instantane- 
ous breakthrough and some deviations of the isotherm from a rectangular form, which 
are not taken into account in the theory. 

We can therefore estimate the effect of the limiting rate of mass transfer from 
the mobile phase to the surface of the particles, as the solution of the previous problem 
is strictly valid only for HI -+ 00. When HI # 03 in the initial stages, the concen- 
tration on thesurface of the sorbent does not have sufficient time to reach equilibrium 
with U, and therefore the concentration above it is zero. Hence, the distribution of the 
layer is accurately described by eqn. 2. 

It is known that the concentration distribution a, = Q (r/R, T) on the cross- 
section of a spherical particle of radius R, when the flow qO is given to its surface is 
described by the equation’ 

Qr D 
-C& 

3T-t 
-sin (I, r/R 

-= 
40 R a:-sin a, 

where r is the distance from the centre of the particle and a, is the 12th root of the 
equation tan a: = a. 

In the front layer q. = /?c,,/o (co is the surface area of the sorbent particles 
per unit volume), so that for the surface concentration, a,, we obtain 

It follows that the time T’, that is required in order to reach the value no from 
the value a, in the front layer is determined by the equation 

and the equation for TO + 0 is 

2Q l-e 
-&To 

p-c-- z 
2 7 

3.4 
-----_---+- 

4 3 
--%vhcnT~-0. 
z 
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Fig. 6. Dependence of TO on HI_ 

(see Fig.6). For T -K TO, the concentration beyond the layer on the surrace is constant 
and is determined by eqn. 2. 

This provides the possibility of solving the reserve problem of f?nding p in 
ierms of Um. 

In particular, if in our example we take for U, the f%st experimental point on 
curve a in Fig. 4, the value /3 = 0.16 set-l is obtained. A value of fl close to this value 
could be o4tained from eqn. 1 when aI = 1 (/? = 0.14sec-1). Hence, ET; = 1.2-lo2 

and To = 5- IO-‘, so t,, = T,R”/D = 350 set (or 7 ml). Curve c shows the initial part 
in Fig. 4. 

Taking into account the approximate estimation of #? (unreliability of the values 
a, (from eqn. l), R and U,) the coincidence of the experimental results with the cal- 
culated values is reasonably accurate. 
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